UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2021

CC4-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer all the questions:
$2 \times 5=10$
(a) Calculate $\lim _{t \rightarrow 3} \vec{r}(t)$, where $\vec{r}(t)=\left(\frac{2 t-4}{t+1}\right) \hat{i}+\left(\frac{t}{t^{2}+1}\right) \hat{j}+(4 t-3) \hat{k}$.
(b) Examine whether the vector valued function $\vec{r}(t)=t^{2} \hat{i}+e^{t} \hat{j}+\frac{1}{t+3} \hat{k}$ is continuous at $t=-3$ or not.
(c) Find the angle between the normals to the following surfaces $y^{2}+z^{2}=9$ and $2\left(x^{2}-z^{2}\right)=3 y$ at the point $(2,2,1)$.
(d) Show that the integral $\int_{C} y d x+x d y$ is independent of the path C joining the points $P(0,1)$ and $Q(1,2)$.
(e) Find the particular integral of the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=x e^{-x}$.

GROUP-B

2. Answer all the questions:
(a) (i) Solve the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+4 y=e^{x} \cos x$.
(ii) Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$.
(b) (i) Solve the Euler's equation $x^{2} \frac{d^{2} y}{d x^{2}}-9 x \frac{d y}{d x}+25 y=0$.
(ii) Solve: $\frac{d x}{d t}+\frac{d y}{d t}-2 y=2 \cos t-7 \sin t$

$$
\frac{d x}{d t}-\frac{d y}{d t}+2 x=4 \cos t-3 \sin t
$$

(c) (i) Evaluate the integral of $\vec{F}=(y z+z x) \vec{i}+x z \vec{j}+(x y+2 z) \vec{k}$ along the circle $x^{2}+y^{2}=1, z=1$ from $(0,1,1)$ to $(1,0,1)$.
(ii) Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}=\left(x^{2}-3 y^{2}\right) \vec{i}+\left(y^{2}-2 x^{2}\right) \vec{j}$ s and C the closed curve in $x y$ plane given by $x=3 \cos t, y=2 \sin t, 0 \leq t \leq 2 \pi, C$ is described in the anti-clockwise sense.

GROUP-C

3. Answer all the questions:
(a) Solve $\left(D^{2}-2 D+4\right) y=\left(x+x^{3}\right) e^{2 x}$ by method of undetermined coefficient.
(b) Apply Picard's method up to third approximation to solve

$$
\frac{d y}{d x}=3 e^{x}+2 y ; \quad y(0)=0
$$

GROUP-D

4. Answer all the questions:
(a) Show that equation of the tangent line to the curve $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$ at the point $t=1$ is $2(x-1)=(y-1)=z-\frac{2}{3}$.
(b) Solve: $\frac{d x}{d t}+2 x-3 y=t$

$$
\frac{d y}{d t}-3 x+2 y=e^{2 t}
$$

