

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 2nd Semester Examination, 2021

CC4-MATHEMATICS

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

- 1. Answer *all* the questions:
 - (a) Calculate $\lim_{t \to 3} \vec{r}(t)$, where $\vec{r}(t) = \left(\frac{2t-4}{t+1}\right)\hat{i} + \left(\frac{t}{t^2+1}\right)\hat{j} + (4t-3)\hat{k}$.
 - (b) Examine whether the vector valued function $\vec{r}(t) = t^2 \hat{i} + e^t \hat{j} + \frac{1}{t+2} \hat{k}$ is continuous at t = -3 or not.
 - (c) Find the angle between the normals to the following surfaces $y^2 + z^2 = 9$ and $2(x^2 - z^2) = 3y$ at the point (2, 2, 1).
 - (d) Show that the integral $\int y \, dx + x \, dy$ is independent of the path C joining the points P(0, 1) and Q(1, 2).
 - (e) Find the particular integral of the differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = xe^{-x}$.

GROUP-B

- 2. Answer *all* the questions:
 - (a) (i) Solve the differential equation $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 4y = e^x \cos x.$ 5+5=10
 - (ii) Apply the method of variation of parameters to solve $\frac{d^2y}{dr^2} y = \frac{2}{1+c^x}$.

1

(b) (i) Solve the Euler's equation
$$x^2 \frac{d^2 y}{dx^2} - 9x \frac{dy}{dx} + 25y = 0.$$
 5+5=10

(ii) Solve:
$$\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2\cos t - 7\sin t$$
$$\frac{dx}{dt} - \frac{dy}{dt} + 2x = 4\cos t - 3\sin t$$

 $2 \times 5 = 10$

 $10 \times 3 = 30$

UG/CBCS/B.Sc./Hons./2nd Sem./Mathematics/MATHCC4/2021

- (c) (i) Evaluate the integral of $\vec{F} = (yz + zx)\vec{i} + xz\vec{j} + (xy + 2z)\vec{k}$ along the circle 5+5=10 $x^2 + y^2 = 1$, z = 1 from (0, 1, 1) to (1, 0, 1).
 - (ii) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x^2 3y^2)\vec{i} + (y^2 2x^2)\vec{j}$ s and C the closed curve in xy plane given by $x = 3\cos t$, $y = 2\sin t$, $0 \le t \le 2\pi$, C is described in the anti-clockwise sense.

GROUP-C

- 3. Answer *all* the questions:
 - (a) Solve $(D^2 2D + 4)y = (x + x^3)e^{2x}$ by method of undetermined coefficient.
 - (b) Apply Picard's method up to third approximation to solve

$$\frac{dy}{dx} = 3e^x + 2y \; ; \; y(0) = 0 \, .$$

GROUP-D

4. Answer *all* the questions:

(a) Show that equation of the tangent line to the curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$ at the point t = 1 is $2(x-1) = (y-1) = z - \frac{2}{3}$.

-X-

(b) Solve:
$$\frac{dx}{dt} + 2x - 3y = t$$
$$\frac{dy}{dt} - 3x + 2y = e^{2t}$$

5×2=10

5×2=10